Chestnut Shell-Activated Carbon Mixed with Pyrolytic Snail Shells for Methylene Blue Adsorption

Author:

An JiahaoORCID,Nhung Nguyen Thi HongORCID,Ding Yaxuan,Chen Hao,He Chunlin,Wang XinpengORCID,Fujita ToyohisaORCID

Abstract

Activated carbon has been used to treat organic dyes in water systems; however, the adsorption capacity of the samples studied was limited by the specific surface area and influenced by the pH of the aqueous solution. In this study, a hybrid adsorbent consisting of a mixture (MCS) of activated chestnut shell biochar (CN) and pyrolyzed snail shell material (SS) was developed to solve this problem, with the waste snail shell samples being processed by pyrolysis and the chestnut shell samples chemically pretreated and then pyrolyzed. The BET and SEM results revealed that the SS had a mesoporous fluffy structure with a higher specific surface (1705 m2/g) and an average pore diameter of about 4.07 nm, providing a large number of sites for adsorption. In addition, XPS and FTIR results showed that the main component of SS was calcium oxide, and it also contained a certain amount of calcium carbonate, which not only provided an alkaline environment for the adsorption of biochar but also degradation and photocatalytic capabilities. The results showed that the MCS3-1 sample, obtained when CN and SS were mixed in the ratio of 3:1, had good capacity for adsorption for methylene blue (MB), with 1145 mg/g at an initial concentration of 1300 mg/L (92% removal rate). The adsorption behaviors were fitted with the pseudo-second-order kinetic model and Freundlich isotherm model, which indicated that the adsorption was multilayer chemisorption with a saturated adsorption capacity of 1635 mg/g. The photocatalytic capacity from the SS composition was about 89 mg/g, and the sorption of MB dye onto the sorbent reached equilibrium after 300 min. The results suggested that MCS3-1 has enormous potential for removing MB from wastewater.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3