Black Tea Waste as Green Adsorbent for Nitrate Removal from Aqueous Solutions

Author:

Bondarev Andreea1,Popovici Daniela Roxana1,Călin Cătalina1,Mihai Sonia1,Sȋrbu Elena-Emilia12,Doukeh Rami1ORCID

Affiliation:

1. Chemistry Department, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploieşti, Romania

2. National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 060021 Bucharest, Romania

Abstract

The aim of the study was to prepare effective low-cost green adsorbents based on spent black tea leaves for the removal of nitrate ions from aqueous solutions. These adsorbents were obtained either by thermally treating spent tea to produce biochar (UBT-TT), or by employing the untreated tea waste (UBT) to obtain convenient bio-sorbents. The adsorbents were characterized before and after adsorption by Scanning Electron Microscopy (SEM), Energy Dispersed X-ray analysis (EDX), Infrared Spectroscopy (FTIR), and Thermal Gravimetric Analysis (TGA). The experimental conditions, such as pH, temperature, and nitrate ions concentration were studied to evaluate the interaction of nitrates with adsorbents and the potential of the adsorbents for the nitrate removal from synthetic solutions. The Langmuir, Freundlich and Temkin isotherms were applied to derive the adsorption parameters based on the obtained data. The maximum adsorption intakes for UBT and UBT-TT were 59.44 mg/g and 61.425 mg/g, respectively. The data obtained from this study were best fitted to the Freundlich adsorption isotherm applied to equilibrium (the values R2 = 0.9431 for UBT and R2 = 0.9414 for UBT-TT), this assuming the multi-layer adsorption onto a surface with a finite number of sites. The Freundlich isotherm model could explain the adsorption mechanism. These results indicated that UBT and UBT-TT could serve as novel biowaste and low-cost materials for the removal of nitrate ions from aqueous solutions.

Funder

Petroleum-Gas University of Ploiesti, Romania

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3