Evaluation of the Interfacial Interaction Ability between Basalt Fibers and the Asphalt Mastic

Author:

Wu BangweiORCID,Pei Zhaohui,Xiao Peng,Lou Keke

Abstract

The interfacial properties between the asphalt mastic and fibers plays an essential role in the fiber-enhanced asphalt mixture properties. However, there is a lack of comprehensive studies on the indicators to evaluate the interfacial interaction ability of fibers with the asphalt mastic. Therefore, this paper selected three types of basalt fibers (denoted as A-BF, B-BF and C-BF) coated with different impregnating agents to prepare the fiber asphalt mastic. The Dynamic Shear Rheometer (DSR) test-based indicators, pull-out strength, and adhesion work were used to access the fiber asphalt mastic interfacial interaction ability. The differences between different indicators were compared and analyzed. The results show that all the selected indicators in this paper can effectively reflect the different fiber asphalt mastic interfacial properties. The evaluation results with different indicators are consistent. The interfacial interaction between fibers and the asphalt mastic increases with increasing temperature. The evaluation result with adhesion work is the most accurate. However, the pull-out strength test is simple, and the test result correlates well with adhesion work, which can be adopted daily to evaluate the fiber asphalt mastic interfacial properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Comparative study on durability of different composite modified asphalt mixtures;Road Mater. Pavement Des.,2019

2. Laboratory investigation on the brucite fiber reinforced asphalt binder and asphalt concrete;Constr. Build. Mater.,2015

3. McDaniel, R.S., and Shah, A. (2003). Asphalt Additives to Control Rutting and Cracking, Indiana Department of Transportation and Purdue University.

4. Investigation of Stone Matrix Asphalt Mortars;Transp. Res. Rec. J. Transp. Res. Board,1996

5. Fiber-Reinforced Asphalt Concrete as Sustainable Paving Material for Airfields;Transp. Res. Rec. J. Transp. Res. Board,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3