Fiber-Reinforced Asphalt Concrete as Sustainable Paving Material for Airfields

Author:

Stempihar Jeffrey J.1,Souliman Mena I.1,Kaloush Kamil E.2

Affiliation:

1. Department of Civil and Environmental Engineering, and Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

2. Sustainable Engineering and the Built Environment, Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

Abstract

Sustainability at airports has received attention recently as owners have worked to incorporate sustainable practices into projects and daily operations. Several guides have been published by airport agencies to document sustainable practices. One potential practice involves alternative paving materials for airfield pavements. Specifically, fiber-reinforced asphalt concrete has shown promising results and has recently been used to resurface Runway 1–19 at the Jackson Hole Airport in Jackson, Wyoming. This paper explores the feasibility of using fiber-reinforced asphalt concrete as a sustainable paving strategy for airfields. The study includes an extensive literature review, performance testing of an asphalt mixture, cost analysis, a sustainable credit summary, and a carbon dioxide emission comparison. Laboratory testing showed that the Jackson Hole Airport mixture performed better than a control mixture produced in the laboratory with similar materials. Further analysis concluded that a fiber-reinforced, porous asphalt friction course could qualify for several sustainable site credits. In addition, the minimal upfront cost of fibers makes this product attractive because the cost can be recouped by an approximate 1-year extension in service life. Pavement design simulations indicated a reduction in equivalent carbon dioxide emissions through the extension of service life. Recommendations for the use of fiber-reinforced asphalt concrete on airfields are provided based on the findings of this study and future research is identified.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3