Determination of the Total Polyphenols Content and Antioxidant Activity of Echinacea Purpurea Extracts Using Newly Manufactured Glassy Carbon Electrodes Modified with Carbon Nanotubes

Author:

Banica Florin,Bungau SimonaORCID,Tit Delia MirelaORCID,Behl Tapan,Otrisal PavelORCID,Nechifor Aurelia Cristina,Gitea Daniela,Pavel Flavia-Maria,Nemeth Sebastian

Abstract

A sensitive electrochemical method was used for the determination of the total phenolic content and antioxidant activity of Echinacea purpurea extracts. In this study, 3 glassy carbon electrodes (GCE) were used: one unmodified and the other two newly manufactured glassy carbon electrodes modified with carbon nanotubes (CNTs) and chitosan (CS) in different concentrations, having the following composition: 1 mg/mL CNTs/CS 5%/GCE and 20 mg/mL CNTs/CS 0.5%/GCE. The determinations were performed on 3 different pharmaceutical forms (capsules, tablets and tincture), which contain E. pururea extract from the root or aerial part of the plant. Standard chicoric and caftaric polyphenolic acids, as well as food supplements extracts, were characterized using voltammetry, in a Britton-Robinson (B-R) electrolyte buffer. The modified 1 mg/mL CNTs/CS 5%/GCE electrode has superior properties compared to the other two (the unmodified and 20 mg/mL CNTs/CS 0.5%/GCE-modified) electrodes used in the study. Echinacea tincture had the highest antioxidant capacity and the biggest total amount of polyphenols (28.72 mg/equivalent of 500 mg powder). Echinacea capsules had the lowest antioxidant capacity, but also the lowest total amount of polyphenols (19.50 mg/500 mg powder); similarly, tablets had approximately the same values of polyphenols content (19.80 mg/500 mg powder), and also antioxidant capacity. The total polyphenol content was consistent with the one indicated by the manufacturers. Pulse-differential cyclic voltammetry represents a rapid, simple and sensitive technique to establish the entire polyphenolic amount and the antioxidant activity of the E. purpurea extracts.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3