Model Parallelism Optimization for CNN FPGA Accelerator

Author:

Wang Jinnan1ORCID,Tong Weiqin12,Zhi Xiaoli12

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

2. Shanghai Engineering Research Center of Intelligent Computing System, Shanghai University, Shanghai 200444, China

Abstract

Convolutional neural networks (CNNs) have made impressive achievements in image classification and object detection. For hardware with limited resources, it is not easy to achieve CNN inference with a large number of parameters without external storage. Model parallelism is an effective way to reduce resource usage by distributing CNN inference among several devices. However, parallelizing a CNN model is not easy, because CNN models have an essentially tightly-coupled structure. In this work, we propose a novel model parallelism method to decouple the CNN structure with group convolution and a new channel shuffle procedure. Our method could eliminate inter-device synchronization while reducing the memory footprint of each device. Using the proposed model parallelism method, we designed a parallel FPGA accelerator for the classic CNN model ShuffleNet. This accelerator was further optimized with features such as aggregate read and kernel vectorization to fully exploit the hardware-level parallelism of the FPGA. We conducted experiments with ShuffleNet on two FPGA boards, each of which had an Intel Arria 10 GX1150 and 16GB DDR3 memory. The experimental results showed that when using two devices, ShuffleNet achieved a 1.42× speed increase and reduced its memory footprint by 34%, as compared to its non-parallel counterpart, while maintaining accuracy.

Funder

Chinese Universities Industry-University-Research Innovation Fund

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3