Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau

Author:

Xiang LongweiORCID,Wang Hansheng,Steffen HolgerORCID,Qiao BaojinORCID,Feng Wei,Jia Lulu,Gao Peng

Abstract

Time series of the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been successfully used to reveal changes in terrestrial water storage (TWS) in many parts of the world. This has been hindered in the interior of the Tibetan Plateau since the derived TWS changes there are very sensitive to the selections of different available GRACE solutions, and filters to remove north-south-oriented (N-S) stripe features in the observations. This has resulted in controversial distributions of the TWS changes in previous studies. In this paper, we produce aggregated hydrology signals (AHS) of TWS changes from 2003 to 2009 in the Tibetan Plateau and test a large set of GRACE solution-filter combinations and mascon models to identify the best combination or mascon model whose filtered results match our AHS. We find that the application of a destriping filter is indispensable to remove correlated errors shown as N-S stripes. Three best-performing destriping filters are identified and, combined with two best-performing solutions, they represent the most reliable solution-filter combinations for determination of weak terrestrial water storage changes in the interior of the Tibetan Plateau from GRACE. In turn, more than 100 other tested solution-filter combinations and mascon solutions lead to very different distributions of the TWS changes inside and outside the plateau that partly disagree largely with the AHS. This is mainly attributed to less effective suppression of N-S stripe noises. Our results also show that the most effective destriping is performed within a maximum degree and order of 60 for GRACE spherical harmonic solutions. The results inside the plateau show one single anomaly in the TWS trend when additional smoothing with a 340-km-radius Gaussian filter is applied. We suggest using our identified best solution-filter combinations for the determination of TWS changes in the Tibetan Plateau and adjacent areas during the whole GRACE operation time span from 2002 to 2017 as well as the succeeding GRACE-FO mission.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3