Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems

Author:

Brewer Kiara,Clulow Alistair,Sibanda MbulisiORCID,Gokool ShaedenORCID,Naiken Vivek,Mabhaudhi TafadzwanasheORCID

Abstract

Smallholder farmers depend on healthy and productive crop yields to sustain their socio-economic status and ensure livelihood security. Advances in South African precision agriculture in the form of unmanned aerial vehicles (UAVs) provide spatially explicit near-real-time information that can be used to assess crop dynamics and inform smallholder farmers. The use of UAVs with remote-sensing techniques allows for the acquisition of high spatial resolution data at various spatio-temporal planes, which is particularly useful at the scale of fields and farms. Specifically, crop chlorophyll content is assessed as it is one of the best known and reliable indicators of crop health, due to its biophysical pigment and biochemical processes that indicate plant productivity. In this regard, the study evaluated the utility of multispectral UAV imagery using the random forest machine learning algorithm to estimate the chlorophyll content of maize through the various growth stages. The results showed that the near-infrared and red-edge wavelength bands and vegetation indices derived from these wavelengths were essential for estimating chlorophyll content during the phenotyping of maize. Furthermore, the random forest model optimally estimated the chlorophyll content of maize over the various phenological stages. Particularly, maize chlorophyll was best predicted during the early reproductive, late vegetative, and early vegetative growth stages to RMSE accuracies of 40.4 µmol/m−2, 39 µmol/m−2, and 61.6 µmol/m−2, respectively. The least accurate chlorophyll content results were predicted during the mid-reproductive and late reproductive growth stages to RMSE accuracies of 66.6 µmol/m−2 and 69.6 µmol/m−2, respectively, as a consequence of a hailstorm. A resultant chlorophyll variation map of the maize growth stages captured the spatial heterogeneity of chlorophyll within the maize field. Therefore, the study’s findings demonstrate that the use of remotely sensed UAV imagery with a robust machine algorithm is a critical tool to support the decision-making and management in smallholder farms.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3