Unlocking the Potential of Deep Learning for Migratory Waterbirds Monitoring Using Surveillance Video

Author:

Wu EntaoORCID,Wang HongchangORCID,Lu Huaxiang,Zhu Wenqi,Jia YifeiORCID,Wen LiORCID,Choi Chi-YeungORCID,Guo Huimin,Li Bin,Sun Lili,Lei Guangchun,Lei Jialin,Jian Haifang

Abstract

Estimates of migratory waterbirds population provide the essential scientific basis to guide the conservation of coastal wetlands, which are heavily modified and threatened by economic development. New equipment and technology have been increasingly introduced in protected areas to expand the monitoring efforts, among which video surveillance and other unmanned devices are widely used in coastal wetlands. However, the massive amount of video records brings the dual challenge of storage and analysis. Manual analysis methods are time-consuming and error-prone, representing a significant bottleneck to rapid data processing and dissemination and application of results. Recently, video processing with deep learning has emerged as a solution, but its ability to accurately identify and count waterbirds across habitat types (e.g., mudflat, saltmarsh, and open water) is untested in coastal environments. In this study, we developed a two-step automatic waterbird monitoring framework. The first step involves automatic video segmentation, selection, processing, and mosaicking video footages into panorama images covering the entire monitoring area, which are subjected to the second step of counting and density estimation using a depth density estimation network (DDE). We tested the effectiveness and performance of the framework in Tiaozini, Jiangsu Province, China, which is a restored wetland, providing key high-tide roosting ground for migratory waterbirds in the East Asian–Australasian flyway. The results showed that our approach achieved an accuracy of 85.59%, outperforming many other popular deep learning algorithms. Furthermore, the standard error of our model was very small (se = 0.0004), suggesting the high stability of the method. The framework is computing effective—it takes about one minute to process a theme covering the entire site using a high-performance desktop computer. These results demonstrate that our framework can extract ecologically meaningful data and information from video surveillance footages accurately to assist biodiversity monitoring, fulfilling the gap in the efficient use of existing monitoring equipment deployed in protected areas.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3