Optimized Small Waterbird Detection Method Using Surveillance Videos Based on YOLOv7

Author:

Lei Jialin1,Gao Shuhui2,Rasool Muhammad Awais3,Fan Rong1ORCID,Jia Yifei1ORCID,Lei Guangchun1

Affiliation:

1. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

2. Birdsdata Technology (Beijing) Co., Ltd., Beijing 100083, China

3. Burewala Sub Campus, University of Agriculture Faisalabad, Vihari 61010, Pakistan

Abstract

Waterbird monitoring is the foundation of conservation and management strategies in almost all types of wetland ecosystems. China’s improved wetland protection infrastructure, which includes remote devices for the collection of larger quantities of acoustic and visual data on wildlife species, increased the need for data filtration and analysis techniques. Object detection based on deep learning has emerged as a basic solution for big data analysis that has been tested in several application fields. However, these deep learning techniques have not yet been tested for small waterbird detection from real-time surveillance videos, which can address the challenge of waterbird monitoring in real time. We propose an improved detection method by adding an extra prediction head, SimAM attention module, and sequential frame to YOLOv7, termed as YOLOv7-waterbird, for real-time video surveillance devices to identify attention regions and perform waterbird monitoring tasks. With the Waterbird Dataset, the mean average precision (mAP) value of YOLOv7-waterbird was 67.3%, which was approximately 5% higher than that of the baseline model. Furthermore, the improved method achieved a recall of 87.9% (precision = 85%) and 79.1% for small waterbirds (defined as pixels less than 40 × 40), suggesting a better performance for small object detection than the original method. This algorithm could be used by the administration of protected areas or other groups to monitor waterbirds with higher accuracy using existing surveillance cameras and can aid in wildlife conservation to some extent.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Mangrove Wetlands Conservation Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3