Extraction of Landslide Information Based on Object-Oriented Approach and Cause Analysis in Shuicheng, China

Author:

Han Yunfei,Wang Ping,Zheng Yongguo,Yasir Muhammad,Xu Chunmei,Nazir ShahORCID,Hossain Md SakaouthORCID,Ullah Saleem,Khan SulaimanORCID

Abstract

In China, landslides are abundant, widespread, and regular, destroying villages and agriculture and sometimes posing a threat to people’s lives. The question of how to rapidly detect and attain landslide data is a significant topic of research, yet traditional measurement using medium-resolution remote sensing data is problematic. Object-oriented categorization is utilized in this research to extract landside data from high-resolution GF-1 and Sentinel-2 data. Data preprocessing begins with orthophoto correction, image matching, and data fusion, followed by band enhancement, which comprises band synthesis, principal component analysis, and filtering, and finally landside extraction using an object-oriented technique. The impact of geology, lithology, rainfall, and human activities on the occurrence of landslides in the study area is explored utilizing DEM data, visualization tools, remote sensing interpretation map, and other associated data. The studies are conducted in Shuicheng County, Guizhou Province, China, with a segmentation scale of 25 pixels and 14 classification feature parameters. Following that, the landslide mass is extracted and categorization findings of nearby characteristics are acquired. Finally, the destructiveness of the landslide is determined by comparing the results of object-oriented classification before and after the landslide. With a Kappa coefficient of 0.76 and a landslide extraction accuracy of 79.8%, the overall classification accuracy is 87%. Combined with the geological structure, rock lithology, spatial location, landslide occurrence process, elevation of the study area, precipitation and the impact of human activities, the causes of the landslide are discussed and analyzed. The early warning of other unknown landslides can be obtained by analyzing the features of the aforementioned components.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Statistics and analysis of landslide disaster data in China in recent 60 years;Sang;Sci. Technol. Commun.,2013

2. Research progress of landslide geological hazard prevention and control;Lei;Earth Sci. Front.,2021

3. “7·23” large landslide in Shuicheng, Guizhou province;Lichao;Chin. J. Geol. Hazards Prev.,2019

4. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3