Experimental Study on Impinging Jet Atomization Using Doublet and Quadruplet Jets

Author:

Weng Jung-Yi1,Liu Yao-Hsien1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Abstract

The process of impinging-jet atomization involves the collision of multiple liquid jets to create atomization. This study specifically focuses on a system that utilizes impinging atomization with multiple jets. The injectors used in this study are arranged in either a planar configuration for doublet injectors or a stereoscopic configuration for quadruplet injectors, both designed to facilitate impinging atomization. The angle at which the jets collide is set at 90°, with injector intersection angles of either 60° or 120°. The diameter of the jets ranges from 0.8 to 1.1 mm, while the length–diameter ratio of the pipe remains fixed at 10. To investigate the atomization process, experiments were conducted by varying flow rates (ranging from 30 to 130 mL/min) from each injector using pure water as the working fluid. This resulted in a range of Weber numbers spanning from 4 to 206 and Reynolds numbers ranging from 578 to 3443. Four atomization regimes were observed in the impinging atomization flow field: closed-rim mode, periodic drop mode, open rim mode, and fully developed mode. The experiment utilized a high-speed camera to observe the formation and breakup of the liquid sheet. However, increasing the number of jets and altering the impingement configuration had minimal impact on the liquid sheet patterns as the Weber number increased. Compared to traditional double jet atomization, quadruplet jet atomization resulted in the wider extension of liquid sheets and similar atomization patterns. This study is useful for designing jet impingement-atomization systems for confined spaces.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3