A Novel Combined Model for Short-Term Emission Prediction of Airspace Flights Based on Machine Learning: A Case Study of China

Author:

Wan JunqiangORCID,Zhang Honghai,Lyu Wenying,Zhou JinlunORCID

Abstract

In order to improve the capability of situational awareness and operational efficiency by considering environmental impact, a prediction model for short-term flight emissions within en route airspace is proposed in this paper. First, the measurement method of fuel consumption and flight emissions based on actual meteorological data is established, and the pattern of flight emissions is analyzed. Then, an adaptive weighting approach is proposed by considering prediction results obtained from a long–short term memory (LSTM) prediction model and extreme gradient boosting (XGBoost) prediction model, respectively. Taking the Guangzhou area control centre (ACC) AR05 sector in central and southern China as an example, the model is trained and tested on emission datasets with three statistical scales, 60 min, 30 min, and 15 min. The result shows that the combined variable–weight prediction model has the greatest prediction effect compared to six other models. In terms of time scale, the prediction performance is best on the 60 min statistical scale dataset; larger statistical unit magnitudes of emissions during the predicting process show better short-term prediction performance. In addition, the increase in data features when training the model plays an essential role in promoting model accuracy. The model established in this paper has high prediction accuracy and stability, which is capable of providing short-term prediction of airspace flight emissions.

Funder

National Key Research and Development Program of China

Joint Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. 20 Year Passenger Forecast 2014–2034,2014

2. 2019 Environmental Report: Aviation and Environment,2019

3. Predicting Fuel Consumption Reduction Potentials Based on 4D Trajectory Optimization with Heterogeneous Constraints

4. Optimization method of aircraft cruise performance parameters considering pollution emissions;Wei;Acta Aeronaut. Astronaut. Sin.,2016

5. Investigating actual landing and takeoff operations for time-in-mode, fuel and emissions parameters on domestic routes in Turkey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3