Abstract
Investigating potential ways to improve fuel efficiency of aircraft operations is crucial for the development of the global air traffic management (ATM) performance target. The implementation of trajectory-based operations (TBOs) will play a major role in enhancing the predictability of air traffic and flight efficiency. TBO also provides new means for aircraft to save energy and reduce emissions. By comprehensively considering aircraft dynamics, available route limitations, sector capacity constraints, and air traffic control restrictions on altitude and speed, a “runway-to-runway” four-dimensional trajectory multi-objective planning method under loose-to-tight heterogeneous constraints is proposed in this paper. Taking the Shanghai–Beijing city pair as an example, the upper bounds of the Pareto front describing potential fuel consumption reduction under the influence of flight time were determined under different airspace rigidities, such as different ideal and realistic operating environments, as well as fixed and optional routes. In the congestion-free scenario with fixed route, the upper bounds on fuel consumption reduction range from 3.36% to 13.38% under different benchmarks. In the capacity-constrained scenario, the trade-off solutions of trajectory optimization are compressed due to limited available entry time slots of congested sectors. The results show that more flexible route options improve fuel-saving potentials up to 8.99%. In addition, the sensitivity analysis further illustrated the pattern of how optimal solutions evolved with congested locations and severity. The outcome of this paper would provide a preliminary framework for predicting and evaluating fuel efficiency improvement potentials in TBOs, which is meaningful for setting performance targets of green ATM systems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
National Key Research and Development Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献