Influence of Temporal and Spatial Fluctuations of the Shallow Sea Acoustic Field on Underwater Acoustic Communication

Author:

Lv Zhichao,Du Libin,Li HumingORCID,Wang Lei,Qin JixingORCID,Yang Min,Ren Chao

Abstract

In underwater acoustic communication (UAC) systems, the channel characteristics are mainly affected by spatiotemporal changes, which are specifically manifested by two factors: the effects of refraction and scattering caused by seawater layered media on the sound field and the random fluctuations from the sea floor and surface. Due to the time-varying and space-varying characteristics of a channel, the communication signals have significant variations in time and space. Furthermore, the signal shows frequency-selective fading in the frequency domain and signal waveform distortion in the time domain, which seriously affect the performance of a UAC system. Techniques such as error correction coding or space diversity are usually adopted by UAC systems to neutralize or eliminate the effects of deep fading and signal distortion, which results in a significant waste of limited communication resources. From the perspective of the sound field, this study used experimental data to analyze the spatiotemporal fluctuation characteristics of the signal and noise fields and then summarized the temporal and spatial variation rules. The influence of the system then guided the parameter configuration and network protocol optimization of the underwater acoustic communication system by reasonably selecting the communication signal parameters, such as frequency, bandwidth, equipment deployment depth, and horizontal distance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Underwater Acoustic Channel;Hui,2007

2. Theoretical analysis and experimental results of interference striation pattern of underwater target radiated noise in shallow water waveguide;Li;Chin. Ournal Acoust.,2011

3. Estimation of source parameters based on underwater acoustic interference pattern in shallow water;Wang;Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing,2011

4. Analytical study on acoustic interference pattern in shallow water;Chen;Acta Acust.,2017

5. Underwater Ambient Noise

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3