Optimized deep learning driven signal detection and adaptive channel estimation in underwater acoustic IoT networks

Author:

Kapileswar Nellore1ORCID,Phani Kumar Polasi1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering SRM Institute of Science and Technology, Ramapuram Campus Chennai India

Abstract

SummaryNowadays, multiple input multiple outputs with orthogonal frequency division multiplexing (MIMO‐OFDM) provide better communication performance that can be applied to the fast‐growing Internet of Things (IoTs). In underwater IoT, information fades away rapidly due to varying water conditions. Therefore, the MIMO model can be applied to the OFDM acoustic system, enabling high‐speed data transmission without affecting the channel effectively. However, detecting the underwater signal and estimating the channel is highly necessary for enhancing underwater acoustic communication (UWAC). Recently, many techniques have been introduced for effectively performing signal detection and channel estimation. However, those techniques face high time complexity due to increased channel interferences and noises during data transmission. Hence, this article brings a novel technique for SD and CE for the UWAC‐IoT‐enabled MIMO‐OFDM system. An adaptive recursive least square (ARLS) technique is proposed in this study for CE that aids in evaluating the acoustic channel parameters effectively. For performing SD, a bi‐directional deep pelican convolutional neural network (BDPCNN) technique is introduced to ensure the presence and absence of signals at the receiver end. The proposed method is analyzed via the MATLAB platform, and the performances are analyzed under different water types like turbid water, coastal water, clear ocean water, and pure seawater. Different performance metrics like bit error rate (BER), mean square error (MSE), energy efficiency (EE), and time complexity are analyzed with different existing techniques. The experimental section obtains the BER of 0.0086, 0.013, 0.017, and 0.021 for turbid, coastal, clear, and pure seawater, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3