The Adhesion and Diffusion of Saturate, Asphaltene, Resin and Aromatic (SARA) Molecules on Oxygenated and Hydrogenated Carbon Nanotubes (CNTs)

Author:

Shishehbor Mehdi,Esmaeeli Hadi S.,Pouranian M. Reza

Abstract

The interfacial adhesion between asphalt binder and carbon nanotubes (CNTs) depends on many nanoscopic properties such as diffusion of SARA molecules on CNTs surface. Functionalization of CNTs with Oxygens (O=CNTs), hydroxyl groups (HO–CNTs), and hydrogens (H–CNTs) has been an effective way to modify the surface properties of CNTs and ultimately the macroscopic properties of the CNT-composites. This paper presents the effect of different dosages of oxygenated and hydrogenated CNTs on the adhesion and diffusion of SARA molecules on CNTs’ surfaces. First, reactive molecular dynamics simulation is used to oxygenate and hydrogenate CNTs up to a certain dosage. Next, it is employed to model the interaction and diffusion of SARA molecules with the functionalized CNTs. We employ the steer molecular dynamic (SMD) and Einstein formula to calculate the adhesion and diffusion properties. The results demonstrate that hydrogenation has little effect on the adhesion energy, while oxygenation can increase adhesion energy up to 100% for 25% dosage. The diffusion coefficient dramatically drops for both oxygenated and hydrogenated CNTs, with lower values for the latter. We observe that for hydrogenated and oxygenated CNTs at different dosages, asphaltene, resin, aromatic, and saturate molecules have the highest to lowest values, respectively.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3