Nonlinear Resonance Interaction between Conjugate Circumferential Flexural Modes in Single-Walled Carbon Nanotubes

Author:

Strozzi Matteo1ORCID,Pellicano Francesco2ORCID

Affiliation:

1. Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Giovanni Amendola 2, 42122 Reggio Emilia, Italy

2. Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10/1, 41125 Modena, Italy

Abstract

This paper presents an investigation on the dynamical properties of single-walled carbon nanotubes (SWCNTs), and nonlinear modal interaction and energy exchange are analysed in detail. Resonance interactions between two conjugate circumferential flexural modes (CFMs) are investigated. The nanotubes are analysed through a continuous shell model, and a thin shell theory is used to model the dynamics of the system; free-free boundary conditions are considered. The Rayleigh–Ritz method is applied to approximate linear eigenfunctions of the partial differential equations that govern the shell dynamics. An energy approach, based on Lagrange equations and series expansion of the displacements, is considered to reduce the initial partial differential equations to a set of nonlinear ordinary differential equations of motion. The model is validated in linear field (natural frequencies) by means of comparisons with literature. A convergence analysis is carried out in order to obtain the smallest modal expansion able to simulate the nonlinear regimes. The time evolution of the nonlinear energy distribution over the SWCNT surface is studied. The nonlinear dynamics of the system is analysed by means of phase portraits. The resonance interaction and energy transfer between the conjugate CFMs are investigated. A travelling wave moving along the circumferential direction of the SWCNT is observed.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3