Novel Damage Index-Based Rapid Evaluation of Civil Infrastructure Subsurface Defects Using Thermography Analytics

Author:

Zhang TianjieORCID,Rahman Md Asif,Peterson Alex,Lu YangORCID

Abstract

The qualitative measurement is a common practice in infrastructure condition inspection when using Infrared Thermography (IRT), as it can effectively locate the defected area non-destructively and non-contact. However, a quantitative evaluation becomes more significant because it can help decision makers figure out specific compensation plans to deal with defects. In this work, an IRT-based novel damage index, damage density, was proposed to quantify the significance of subsurface defects. This index is extracted from IR images using our thermography analytics framework. The proposed framework includes thermal image processing, defect edge detection, and thermal gradient map calculations. A modified root mean square error (mRMSE), which is a novel modification to the existing RMSE, was compared to evaluate the performance of image processing methods. The results show that the histogram equalization performs better than the other methods in the image processing part as the mRMSE is the lowest among them. The Pearson correlation coefficient between the developed index and the volume of subsurface defects is 0.94, which indicates a positive linear relationship between them. Thus, the proposed damage index can be used to guide the engineering practices and maintenance decisions for the subsurface determination in the civil infrastructure.

Funder

Idaho Department of Commerce

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3