The Application of Two-Dimensional Continuous Wavelet Transform Based on Active Infrared Thermography for Subsurface Defect Detection in Concrete Structures

Author:

Saleh Ali K.ORCID,Sakka Zafer,Almuhanna Hasan

Abstract

The early condition-based assessment of civil infrastructures plays an essential role in extending their service life, preventing undesirable sudden failures, and reducing maintenance and rehabilitation costs. One of the most commonly used and fastest nondestructive testing (NDT) techniques is infrared thermography (IRT), which has emerged as a powerful method for assessing general concrete quality and detecting subsurface damage in structural members. Nevertheless, the accurate detection and classification of localized defects is still a challenging task to achieve. The contribution made by enhancing defect detection using two-dimensional (2D) wavelet transformation (WT) as a post-processing method, however, has received little attention within the field of active IR thermography. In this study, we explored the use of continuous wavelet transform (CWT) to visualize how the wavelet function at different frequencies could enhance the damage features of thermal images. A concrete slab under an applied heat flux was tested experimentally by an IR camera with well-controlled excitation sources. The qualitative visualization of thermograms was translated into quantitative results by extracting, processing, and post-processing the values assigned to the pixels in the thermal images. With the assumption of there being no oriented damage features, an isotropic (non-directional) Mexican hat wavelet was utilized as the mother wavelet. The experimental results showed that the 2D-CWT method achieved strong detection performance in extracting discriminatory features (defective areas) from the acquired thermal images. Compared with raw thermograms, the resultant CWT-transformed images were less affected by the non-uniform heating effect, and the boundaries of the defects contrasted more strongly. The 2D-CWT method demonstrates good sensitivity when an appropriate wavelet type and scale factor are chosen. Due to the desire to detect localized defects, adjusting the scale factor of the wavelet is important to improve the efficiency of detection as lower scale factors provide the finer details of thermal images, whereas higher scale factors provide the general outline of internal defects. The findings of this study represent a further step toward improving thermographic data for more precise defect-detection imaging, and principally for large concrete structures, that can be verified easily using other NDT surveys.

Funder

Kuwait Institute for Scientific Research

SEMATCO

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3