U-Net-Based CNN Architecture for Road Crack Segmentation

Author:

Di Benedetto Alessandro1ORCID,Fiani Margherita1ORCID,Gujski Lucas Matias1

Affiliation:

1. Department of Civil Engineering (DICIV), University of Salerno, 84084 Fisciano, Italy

Abstract

Many studies on the semantic segmentation of cracks using the machine learning (ML) technique can be found in the relevant literature. To date, the results obtained are quite good, but often the accuracy of the trained model and the results obtained are evaluated using traditional metrics only, and in most cases, the goal is to detect only the occurrence of cracks. Particular attention should be paid to the thickness of the segmented crack since, in road pavement maintenance, the width of the crack is the main parameter and is the one that characterizes the severity levels. The aim of our study is to optimize the crack segmentation process through the implementation of a modified U-Net model-based algorithm. For this, the Crack500 dataset is used, and then the results are compared with those obtained from the U-Net algorithm, which is currently found to be the most accurate and performant in the literature. The results are promising and accurate, as the findings on the shape and width of the segmented cracks are very close to reality.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3