Damage Importance Analysis for Pavement Condition Index Using Machine-Learning Sensitivity Analysis

Author:

Pérez Alejandro1,Sánchez Claudia N.12ORCID,Velasco Jonás3ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Panamericana, Aguascalientes 20296, Mexico

2. Departamento de Sistemas Electrónicos, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico

3. CONAHCYT-Centro de Investigación en Matemáticas (CIMAT), A.C., Aguascalientes 20200, Mexico

Abstract

The Pavement Condition Index (PCI) is a prevalent metric for assessing the condition of rigid pavements. The PCI calculation involves evaluating 19 types of damage. This study aims to analyze how different types of damage impact the PCI calculation and the impact of the performance of prediction models of PCI by reducing the number of evaluated damages. The Municipality of León, Gto., Mexico, provided a dataset of 5271 records. We evaluated five different decision-tree models to predict the PCI value. The Extra Trees model, which exhibited the best performance, was used to assess the feature importance of each type of damage, revealing their relative impacts on PCI predictions. To explore the potential for reducing the complexity of the PCI evaluation, we applied Sequential Forward Search and Brute Force Search techniques to analyze the performance of models with various feature combinations. Our findings indicate no significant statistical difference in terms of Mean Absolute Error (MAE) and the coefficient of determination (R2) between models trained with 13 features compared to those trained with all 17 features. For instance, a model using only eight damages achieved an MAE of 4.35 and an R2 of 0.89, comparable to the 3.56 MAE and 0.92 R2 obtained with a model using all 17 features. These results suggest that omitting some damages from the PCI calculation has a minimal impact on prediction accuracy but can substantially reduce the evaluation’s time and cost. In addition, knowing the most significant damages opens up the possibility of automating the evaluation of PCI using artificial intelligence.

Funder

Chairs Program of the National Council of Humanities, Science and Technology (CONAHCYT) project

Publisher

MDPI AG

Reference46 articles.

1. Yoder, E.J., and Witczak, M.W. (1991). Principles of Pavement Design, John Wiley & Sons.

2. AASHO (1961). Interim Guide for Design of Flexible Pavement Structures, AASHO American Association of State Highway and Transportation Officials.

3. Ullidtz, P. (1987). Pavement Analysis, Elsevier.

4. Sayers, M.W. (1998). The Little BOOK of Profiling: Basic Information about Measuring and Interpreting Road Profiles, University of Michigan, Transportation Research Institute. Technical Report.

5. Shahin, M.Y. (2005). Pavement Management for Airports, Roads, and Parking Lots, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3