A Mission-Oriented Flight Path and Charging Mechanism for Internet of Drones

Author:

Huang Chenn-Jung12ORCID,Hu Kai-Wen2,Cheng Hao-Wen1,Sie Lin Yi-Sin1

Affiliation:

1. Department of Computer Science & Information Engineering, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan

2. Department of Electrical Engineering, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan

Abstract

In addition to traditional battery exchange services and stationary charging stations, researchers have proposed wireless charging technology, such as decentralized laser charging or drone-to-drone charging in flight, to provide power to drones with insufficient battery electricity. However, the charging methods presented in the literature will inevitably cause drones to wait in line for charging during peak hours and disrupt their scheduled trips when the number of drones grows rapidly in the future. To the best of our knowledge, there have been no integrated solutions for drone flight path and charging planning to alleviate charging congestion, taking into account the different mission characteristics of drones and the charging cost considerations of drone operators. Accordingly, this paper provides adaptive charging options to help drone operators to solve the above-mentioned problems. Drones on ordinary missions can use conventional battery swap services, wired charging stations, or electromagnetic wireless charging stations to recharge their batteries as usual, whereas drones on time-critical missions can choose drone-to-drone wireless charging or decentralized laser charging deployed along the fight paths to charge the batteries of drones in flight. Notably, since fixed-wing drones have larger wing areas to install solar panels, they can also use solar energy to charge during flight if the weather is clear. The simulation results exhibited that the proposed work reduced the power load of the power grid during peak hours, met the charging needs of each individual drone during flight, and cut down the charging costs of drone operators. As a result, an all-win situation for drone operators, drone customers, and power grid operators was achieved.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3