Affiliation:
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Abstract
Mn-Ce catalysts modified by Mo were loaded on low-density porous ceramics (LDPC) for simultaneous denitrification and dust removal. The Mn-Ce-Mo catalyst on LDPC had nearly 99% NOx conversion efficiency from 120 °C to 200 °C and still maintained more than 90% NOx conversion efficiency when the filtration velocity reached to 4 m/min. Mn-Ce-Mo catalysts/LDPC not only exhibited excellent catalytic performance at low temperature, they also exhibited good resistance to H2O and SO2. The NOx conversion efficiency remained above 89% at 160 °C when the flue gas contained 100 ppm SO2 and 7 vol.% H2O. The analysis of NH3-TPD and XPS confirmed that Mn2Ce1Ox catalysts modified with Mo had the stronger surface acidity and more adsorbed oxygen, leading to higher NH3-SCR activity and better resistance to SO2 and H2O.
Funder
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献