Simultaneous removal of SO2 and NOx from flue gas by low-temperature adsorption over activated carbon

Author:

Wang Shiqing,Xu Shisen,Gao Shiwang,Xiao Ping,Jiang Minhua,Zhao He,Huang Bin,Liu Lianbo,Niu Hongwei,Wang Jinyi,Guo Dongfang

Abstract

AbstractAn exceptional phenomenon has been observed that SO2 and NOx in flue gas can be effectively adsorbed over activated carbon with a surprising capacity at cold temperatures with the presence of oxygen. In this study, the adsorption characteristics of NO and SO2 over activated carbon at 80, 20, 0, and − 20 is experimentally investigated. Without the presence of oxygen, adsorption of NO is negligible. In the presence of oxygen, NO can be oxidized to NO2 over activated carbon which leads to the co-adsorption of NO/NO2 within the adsorption bed. Catalytic oxidation of NO over activated carbon can be significantly enhanced at cold temperatures, leading to an extraordinary increase of adsorption capacity of NO. With an initial concentration of NO = 200 ppmv and a space velocity of 5000 h−1, the average specific capacity increases from 3.8 to 169.1 mg/g when the temperature decreases from 80 to – 20 ℃. For NO–O2 co-adsorption, the specific capacity increases along the adsorption bed due to the increasing NO2 concentrations. The adsorption capacity of SO2 is also significantly enhanced at cold temperatures. With an initial concentration of SO2 = 1000 ppmv, the specific capacity increases from 12.9 to 123.1 mg/g when the temperature decreases from 80 to – 20 ℃. A novel low-temperature adsorption (LAS) process is developed to simultaneously remove SO2 and NOx from flue gas with a target of near-zero emission. A pilot-scale testing platform with a flue gas flowrate of 3600 Nm3/h is developed and tested. Emission of both SO2 and NOx is less than 1 ppmv, and the predicted energy penalty is about 3% of the net generation.

Funder

China Huaneng Group Co., Ltd.

China Huaneng Group Co., Ltd

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3