Dynamic Modeling and Stability Prediction of Robot Milling Considering the Influence of Force-Induced Deformation on Regenerative Effect and Process Damping

Author:

Du Yuchao1,Liang Zhiqiang12ORCID,Chen Sichen1,Huang Hao3,Zheng Haoran1,Gao Zirui1,Zhou Tianfeng12,Liu Zhibing1,Wang Xibin1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China

3. Jianglu Machinery Electronics Group Co., Ltd., Xiangtan 411100, China

Abstract

Undesirable chatter is one of the key problems that restrict the improvement of robot milling quality and efficiency. The prediction of chatter stability, which is used to guide the selection of process parameters, is an effective method to avoid chatter in robot milling. Due to the weak stiffness of the robot, deformation caused by milling forces becomes an unavoidable problem, which will change the tool–workpiece contact area and affect the stability prediction. However, it is often simplified and neglected. In this paper, a multipoint contact dynamic model of robot milling is established, which considers the influence of force-induced deformation on the regenerative effect and process damping. The tool–workpiece contact area is discretized into a finite number of nodes along the axial direction so that the force and deformation at each node can be calculated separately. The different contact forms of the tool–workpiece under different process parameters are discussed in different cases, and the interaction process between cutting force and force-induced deformation is analyzed in detail. An iterative strategy is used to calculate the deformation of each node and the result of the tool–workpiece contact boundary. Finally, chatter stability of robot milling is predicted by a fully discrete method. Robot milling experiments were carried out to verify the predicted results. The results show that force-induced deformation is an important factor improving the stability prediction accuracy of robot milling, and a more accurate prediction result can be obtained by simultaneously considering force-induced deformation and process damping.

Funder

Civil Aircraft Project

National Natural Science Foundation of China

Inversion and Application Project of Outcome

Key R&D Program of Inner Mongolia

Basic Research Fund of Beijing Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3