Modified Voce-Type Constitutive Model on Solid Solution State 7050 Aluminum Alloy during Warm Compression Process

Author:

Teng Haihao12,Xia Yufeng12,Pan Chenghai12,Li Yan12

Affiliation:

1. School of Material Science and Engineering, Chongqing University, Chongqing 400044, China

2. Chongqing Key Laboratory of Advanced Mold Intelligent Manufacturing, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

Abstract

The 7050 alloy is a kind of Al-Zn-Mg-Cu alloy that is widely used for aircraft structures. Although the deformation behavior of the solid solution state 7050 aluminum alloy is critical for engineering and manufacturing design, it has received little attention. In this study, the room and warm compression behavior of the solid solution-state 7050 alloy was researched, and a modified model with variable parameters was built for the flow stress and load prediction. The isothermal compression tests of the solid solution-state 7050 alloy were performed under the conditions of a deformation temperature of 333–523 K, a strain rate of 10−3–10−1 s−1, and a total reduction of 50%. The strain-stress curves at different temperatures were corrected by considering interface friction. The flow stress model of aluminum was established using the modified Voce model. For evaluating the modified Voce model’s prediction accuracy, the flow stresses calculated by the model were compared with the experimental values. Consequently, for assessing its prediction abilities in finite element applications, the whole compression process was simulated in the finite element analysis platform. The results sufficiently illustrated that the modified Voce-type model can precisely predict the complex flow behaviors during warm compression. This study will guide the prediction of the warm compression load and the optimization of the heat treatment process of the alloy.

Funder

National Natural Science Foundation of China

Chongqing Natural Science Foundation general project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3