Abstract
The evolution behaviors of the second phase, substructure and grain of the spray-deposited 7055 aluminum alloy during hot compression at 300~470 °C were studied by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the AlZnMgCu phase resulting from the deposition process dissolves gradually with the increase in deformation temperature, but the Al7Cu2Fe phase remains unchanged. The plastic instability of the spray-deposited 7055 aluminum alloy occurs at 470 °C with a 1~5 s−1 strain rate range. Partial dynamic recrystallization (PDRX) adjacent to the original high angle grain boundaries (HAGBs) not only occurs at 300~400 °C with the low strain rates ranging from 0.001 to 0.1 s−1 but also at 450 °C with a high strain rate of 5 s−1. Continuous dynamic recrystallization (CDRX) appears at 450 °C with a low strain rate of 0.001 s−1. The primary nucleation mechanism of PDRX includes the rotation of the subgrain adjacent to the original HAGBs and the subgrain boundary migration. The homogeneous misorientation increase in subgrains is the crucial nucleation mechanism of CDRX. At 300~400 °C, the residual coarse particle stimulated (PSN) nucleation can also be observed.
Funder
the National Natural Science Foundation of China
the Key Research and Development Program of Zhenjiang City
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献