Post-Weld Heat Treatment of S690QL1 Steel Welded Joints: Influence on Microstructure, Mechanical Properties and Residual Stress

Author:

Tomerlin Damir1ORCID,Marić Dejan2ORCID,Kozak Dražan2ORCID,Samardžić Ivan2

Affiliation:

1. R&D Department, DOK-ING Ltd., Slavonska Avenija 22G, 10000 Zagreb, Croatia

2. Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod, Trg I. B. Mažuranić 2, 35000 Slavonski Brod, Croatia

Abstract

During the manufacturing of welded structures, some degree of residual stresses occurs. The classic approach to residual stress reduction is Post-Weld Heat Treatment (PWHT). In the case of structural grade mild steels, the thermal process is well established. In case of S690QL1 High Strength Steel (HSS), which is manufactured using the Quenching and Tempering (QT) process considered in this paper, only limited PWHT treatment is possible without deterioration of mechanical properties. Since this steel grade is susceptible to subsequent heat input, the challenge is to establish adequate PWHT parameters, achieving residual stress reduction while retaining sufficiently high mechanical properties. The paper considers X joint welded HSS steel plates with slightly overmatching filler metal. The welded coupon is prepared and subjected to PWHT treatment. The research on the influence of heat treatment was performed using the four different PWHT cycles and initial As-Welded (AW) material condition. The authors proposed those PWHT cycles based on available resources and the literature. Process holding temperature is considered the variable parameter directly related to the behaviors of material properties. The methodology of welded joint analysis includes experimental testing of mechanical properties, metallographic examination, and residual stress quantification. Testing of mechanical properties includes tensile testing, Charpy V-notch impact testing, and hardness testing in scope of complete welded joint (BM + HAZ + WM). Metallographic examination is performed in order to characterize the welded joint material in relation to applied PWHT cycles. In order to quantify residual stresses, all heat-treated samples were examined via the X-ray diffraction method. Mechanical properties testing determined that an increase in PWHT cycle holding temperature leads to degradation of tested mechanical properties. For specific zones of the welded joint, the decreasing trend from AW condition to Cycle D (max. 600 °C) can be quantified. Based on representative specimens comparison, strength values (BM ≤ 5.7%, WM ≤ 12.1%, HAZ ≤ 20%), impact testing absorbed energy (BM = 17.1%, WM = 25.8%, FL = 12.5%, HAZ = 0.6%), and hardness values (BM = 4.1%, WM = 3.2%, CGHAZ = 16.6%, HAZ = 24.2%) are all exhibiting decrease. Metallographic examination, using the light microscopy, after the exposure to PWHT thermal cycles, did not reveal significant changes in the material throughout all specific welded joint segments. Average relative reduction in residual stress in correlation with PWHT temperature can be observed (AW = 0%, Cycle A (max. 400 °C) = 72%, Cycle B (max. 530 °C) = 81%, Cycle C (max. 550 °C) = 93% and Cycle D (max. 600 °C) = 100% stress reduction). It can be concluded that S690QL1 HSS welded joints can generally be subjected to PWHT, while adhering to the limits of the material and process. In the authors’ shared opinion, it is advisable to use the PWHT Cycle C (max. 550 °C) with 93% RS reduction, while mechanical properties retain high values.

Funder

DOK-ING Ltd.

Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3