An Approach to Assessing S960QL Steel Welded Joints Using EBW and GMAW

Author:

Sisodia Raghawendra Pratap SinghORCID,Gáspár MarcellORCID

Abstract

In recent years, ultra-high-strength structural (UHSS) steel in quenched and tempered (Q+T) conditions, for example, S960QL has been found in wider application areas such as structures, cranes, and trucks due to its extraordinary material properties and acceptable weldability. The motivation of the study is to investigate the unique capabilities of electron beam welding (EBW) compared to conventional gas metal arc welding (GMAW) for a deep, narrow weld with a small heat-affected zone (HAZ) and minimum thermal distortion of the welded joint without significantly affecting the mechanical properties. In this study, S960QL base material (BM) specimens with a thickness of 15 mm were butt-welded without filler material at a welding speed of 10 mm/s using the high-vacuum (2 × 10−4 mbar) EBW process. Microstructural characteristics were analyzed using an optical microscope (OM), a scanning electron microscope (SEM), fractography, and an electron backscatter diffraction (EBSD) analysis. The macro hardness, tensile strength, and instrumented Charpy-V impact test were performed to evaluate the mechanical properties. Further, the results of these tests of the EBW joints were compared with the GMAW joints of the same steel grade and thickness. Higher hardness is observed in the fusion zone (FZ) and the HAZ compared to the BM but under the limit of qualifying the hardness value (450 HV10) of Q+T steels according to the ISO 15614-11 specifications. The tensile strength of the EBW-welded joint (1044 MPa) reached the level of the BM as the specimens fractured in the BM. The FZ microstructure consists of fine dendritic martensite and the HAZ predominantly consists of martensite. Instrumented impact testing was performed on Charpy-V specimens at −40 °C, which showed the brittle behavior of both the FZ and HAZ but to a significantly lower extent compared to GMAW. The measured average impact toughness of the BM is 162 J and the average impact toughness value of the HAZ and FZ are 45 ± 11 J and 44 ± 20 J, respectively.

Funder

Hungarian Higher Education Excellence Programme

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3