Influence of Severe Plastic Deformation by Extrusion on Microstructure, Deformation and Thermal Behavior under Tension of Magnesium Alloy Mg-2.9Y-1.3Nd

Author:

Legostaeva Elena1,Eroshenko Anna1,Vavilov Vladimir2,Skripnyak Vladimir A.3ORCID,Luginin Nikita12ORCID,Chulkov Arsenii2,Kozulin Alexander3ORCID,Skripnyak Vladimir V.3,Schmidt Juergen4ORCID,Tolmachev Alexey1,Uvarkin Pavel1,Sharkeev Yurii12ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch Russian Academy of Sciences, 634055 Tomsk, Russia

2. School of Non-Destructive Testing, Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

3. Department of Mechanics of Deformed Solid Body, Faculty of Physics and Engineering, National Research Tomsk State University, 634050 Tomsk, Russia

4. Department of Electrochemistry, Innovent Technology Development, D-07745 Jena, Germany

Abstract

The microstructural investigation, mechanical properties, and accumulation and dissipation of energies of the magnesium alloy Mg-2.9Y-1.3Nd in the recrystallized state and after severe plastic deformation (SPD) by extrusion are presented. The use of SPD provides the formation of a bimodal structure consisting of grains with an average size 15 µm and of ultrafine-grained grains with sizes less than 1 µm and volume fractions up to 50%, as well as of the fine particles of the second Mg24Y5 phases. It is established that grain refinement during extrusion is accompanied by an increase of the yield strength, increase of the tensile strength by 1.5 times, and increase of the plasticity by 1.8 times, all of which are due to substructural hardening, redistribution of the phase composition, and texture formation. Using infrared thermography, it was revealed that before the destruction of Mg-2.9Y-1.3Nd in the recrystallized state, there is a sharp jump of temperature by 10 °C, and the strain hardening coefficient becomes negative and amounts to (−6) GPa. SPD leads to a redistribution of thermal energy over the sample during deformation, does not cause a sharp increase in temperature, and reduces the strain hardening coefficient by 2.5 times.

Funder

Government Research Assignment for the Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences

Tomsk Polytechnic University Development Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3