Thermal stability of extruded Mg-Y-Nd alloy structure

Author:

,Eroshenko AnnaORCID,Legostaeva ElenaORCID, ,Glukhov IvanORCID, ,Uvarkin PavelORCID, ,Tolmachev AlekseiORCID, ,Sharkeev YuriiORCID, ,

Abstract

Introduction. Today, bioresorbable magnesium alloys possessing the required physical, mechanical, corrosion, and biological properties, are promising materials for orthopedic and cardiovascular surgery. The addition of rare earth elements such as yttrium, neodymium, and cerium to magnesium alloys improves its properties. Compared to widely used titanium alloys, magnesium alloys have a number of advantages. Bioresorbable materials slowly dissolve in the body, and recurrent operation to remove the implant is not needed. Biocompatible magnesium alloys have a fairly low elastic modulus (10 to 40 GPa), approaching to that of cortical bone, that reduces the contact stress in the bone-implant system. At the same time, strength properties of magnesium alloys alloyed with rare earth elements do not always meet the requirements for medical applications. Severe plastic deformation, for example, equal channel angular pressing, torsion under quasi-hydrostatic pressure, uniaxial forging, extrusion, is therefore very promising technique to gain the high level of mechanical properties of metals and alloys. Severe plastic deformation of magnesium alloys improves its structural strength by 2.5 times due to the generation of an ultrafine-grained and/or fine-grained structure. The issues related to the study of heat resistance, structure and phase composition of magnesium alloys with appropriate strength are relevant. Purpose of the work is to determine the influence of thermal effects on the microstructure of the extruded Mg-Y-Nd alloy. Methodology. The extruded Mg-2.9Y-1.3Nd alloy (95.0 wt. % Mg, 2.9 wt. % Y, 1.3 wt. % Nd,  0.2 wt. % Fe,  0 wt. % Al) is investigated in this paper. The thermal stability of the alloy microstructure is studied after annealing at 100, 300, 350, 450 and 525 °С in argon for one hour. The microstructure and phase composition are investigated using optical, transmission and scanning electron microscopes and analyzed on an X-ray diffractometer. Results and discussion. The extruded Mg-2.9Y-1.3Nd alloy has the bimodal fine-grained microstructure. It is found that along with the stable α-Mg phase, the alloy structure consists of Mg24Y5 intermetallic particles and -, -, and 1-phase precipitates. Annealing in the temperature range of 100–450 °С for one hour has no effect on the structure of the Mg-2.9Y-1.3Nd alloy, but promotes the growth in the linear dimensions of -, -, and 1-phases precipitates. In the temperature range of 300–450 °С, the morphology of -, ,- and 1-phases changes, while the average grain size of the major -phase remains unchanged. Annealing at 525 °С leads to a notable transformation of the bimodal microstructure of the alloy, which is associated with the intensive growth in the grain size of the -phase, Mg24Y5 particles, and -, -, and 1-phases precipitates. Annealing in the temperature range of 100–450 °C leads to an increase in the linear dimensions of Mg24Y5 particles, -, -, and 1-phases precipitates and bimodal microstructure of the Mg-2.9Y-1.3Nd alloy remains unchanged.

Publisher

Novosibirsk State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3