A Planning Method for Partially Grid-Connected Bus Rapid Transit Systems Operating with In-Motion Charging Batteries

Author:

Díez Andrés E.ORCID,Restrepo Mauricio

Abstract

This paper presents an electrical infrastructure planning method for transit systems that operate with partially grid-connected vehicles incorporating on-board batteries. First, the state-of-the-art of electric transit systems that combine grid-connected and battery-based operation is briefly described. Second, the benefits of combining a grid connection and battery supply in Bus Rapid Transit (BRT) systems are introduced. Finally, the planning method is explained and tested in a BRT route in Medellin, Colombia, using computational simulations in combination with real operational data from electric buses that are currently operating in this transit line. Unlike other methods and approaches for Battery Electric Bus (BEB) infrastructure planning, the proposed technique is system-focused, rather than solely limited to the vehicles. The objective of the technique, from the vehicle’s side, is to assist the planner in the correct sizing of batteries and power train capacity, whereas from the system side the goal is to locate and size the route sections to be electrified. These decision variables are calculated with the objective of minimizing the installed battery and achieve minimum Medium Voltage (MV) network requirements, while meeting all technical and reliability conditions. The method proved to be useful to find a minimum feasible cost solution for partially electrifying a BRT line with In-motion Charging (IMC) technology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. Grid-connected vehicles as the core of future land-based transport systems

2. The Future of Railhttps://www.iea.org/reports/the-future-of-rail

3. Global EV Outlook 2019https://www.iea.org/reports/global-ev-outlook-2019

4. Feasibility of Electric Buses in Public Transport

5. Charging Schedule for Load Peak Minimization on Large-Scale Electric Bus Depots

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3