Abstract
The aim of the study was to investigate the process of electrostatic fabrication of cellulose acetate (CA) nanofibers containing methylene blue (MB) as a photosensitizer. The electrical, physicochemical, and biocidal properties of the prepared material were given. CA nanofibers were prepared by electrospinning method using a solvent mixture of acetone and distilled water (9:1 vv−1) and different concentrations of CA (i.e., 10–21%). Additionally, methylene blue was implemented into the polymer solution with a CA concentration of 17% to obtain fibers with photo-bactericidal properties. Pure electrospun CA fibers were more uniform than fibers with MB (i.e., ribbon shape). Fiber diameters did not exceed 900 nm for the tested polymer solutions and flow rate below 1.0 mL h−1. The polymer properties (i.e., concentration, resistivity) and other parameters of the process (i.e., flow rate, an applied voltage) strongly influenced the size of the fibers. Plasma treatment of nanofibers resulted in reduced biofilm formation on their surface. The results of photo-bactericidal activity (i.e., up to 180 min) confirmed the high efficiency of inactivation of Staphylococcus aureus cells using fibers containing methylene blue (i.e., with and without plasma treatment). The most effective reduction in the number of biofilm cells was equal to 99.99 ± 0.3%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献