Synthetic Nano- and Microfibers

Author:

Wagterveld R. MartijnORCID,Marijnissen Jan C.M.,Gradoń LeonORCID,Moskal ArkadiuszORCID

Abstract

Global production of fibrous material is significantly growing reaching an expected 145 million metric tons in 2030. Fiber production includes mostly synthetic polymers, cotton and man-made cellulose (viscose). The main uses are in clothing, household and furnishing, industrial construction, automotive and other. Increasing consumption of fabric material causes the accumulation of single fibers into the natural environment. Significant numbers are discharged via wastewater from washing clothes, deposition from atmosphere or by other ways of transport. Fibers are now the most prevalent type of anthropogenic particles found by microplastic pollution surveys around the world. Substantial fiber concentrations are found in surface water, deep-sea and fresh water ecosystems. Consequently, fibers are present in food, drinking water, human lungs and digestive tracts of aquatic animals. Currently, there is great concern for the release of plastic nano- and micro fibers and microparticles (microplastics) to the natural environment for which nobody knows, so far, the ultimate consequences for health and ecological homeostasis. The potential risk introduced by the presence of fibers in the environment induces significant interest.These challenges were the source of inspiration for organizing our workshop . A group of scientists from different parts of the world met on Nov 4/5 2019 at Wetsus, European Centre of Excellence for Sustainable Water Technology in Leeuwarden, The Netherlands, to discuss all known aspects of synthetic nano- and microfibers. This included morphology, physicochemical properties, production and origin of nano/micro fibers entering the atmosphere, water and food chain; the potential consequences of inhalation and ingestion for human health; exposure and ingress via life cycle for aquatic biota; analytical and measurement methods; techniques to clean air and water, and protection means against inhalation or other ways to enter the human body.

Publisher

Glasstree

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3