Abstract
The use of recombinant technologies has been proposed as an alternative to improve livestock production systems for more than 25 years. However, its effects on animal health and performance have not been described. Thus, understanding the use of recombinant technology could help to improve public acceptance. The objective of this review is to describe the effects of recombinant technologies and proteins on the performance, health status, and rumen fermentation of meat and milk ruminants. The heterologous expression and purification of proteins mainly include eukaryotic and prokaryotic systems like Escherichia coli and Pichia pastoris. Recombinant hormones have been commercially available since 1992, their effects remarkably improving both the reproductive and productive performance of animals. More recently the use of recombinant antigens and immune cells have proven to be effective in increasing meat and milk production in ruminant production systems. Likewise, the use of recombinant vaccines could help to reduce drug resistance developed by parasites and improve animal health. Recombinant enzymes and probiotics could help to enhance rumen fermentation and animal efficiency. Likewise, the use of recombinant technologies has been extended to the food industry as a strategy to enhance the organoleptic properties of animal-food sources, reduce food waste and mitigate the environmental impact. Despite these promising results, many of these recombinant technologies are still highly experimental. Thus, the feasibility of these technologies should be carefully addressed before implementation. Alternatively, the use of transgenic animals and the development of genome editing technology has expanded the frontiers in science and research. However, their use and implementation depend on complex policies and regulations that are still under development.
Funder
U.S. Department of Agriculture
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献