Gap Structure and Regeneration in the Mixed Old-Growth Forests of National Nature Reserve Sitno, Slovakia

Author:

Jaloviar Peter,Sedmáková DenisaORCID,Pittner Ján,Jarčušková Danková Lucia,Kucbel Stanislav,Sedmák RobertORCID,Saniga Milan

Abstract

Forest management mimicking natural processes represents an approach to maintain mixed, uneven-aged stands at small spatial scales. The reliance on natural processes, especially on natural regeneration leads to the use of gap-based regeneration as a fundamental silvicultural technique. As a baseline for such management, we investigated mixed forest in unmanaged National Nature Reserve Sitno in the Western Carpathians, which harbours extraordinary diversity on a rather small scale. To quantify the impact of gaps on gap-filling processes and to assess the role they play in recently observed changes in tree species composition we established a large (2.5 ha) permanent research plot and surveyed the status of natural regeneration, forest structure, tree species composition, and disturbance regime. Our research highlights the long-term and contemporary difficulties in the establishment of Quercus petraea (Matt.) Liebl and Fagus sylvatica (L.). Based on the provided evidence, the native tree species diversity in one of the few preserved old-growth multi-species beech-oak forest remnants is not likely to persist, what could have many implications for future ecosystem functioning. Our results suggest that variation in gap size is an important factor contributing to composition of tree species composition of natural regeneration. The recent intermediate-scale disturbance pattern dominating the old-growth beech-oak forest is beneficial to canopy recruitment of species less shade-tolerant than Fagus sylvatica, as Acer pseudoplatanus (L.), Acer platanoides (L.), and Fraxinus excelsior (L.). We discuss possible factors behind observed shifts in tree species composition and limitations for application of gap dynamics to forest practice in managed beech-oak forest systems. Overall, results of this study may help to design silvicultural measures promoting mixed-species forests to deliver a range of desired ecosystem services.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3