Features and Evolution of Autumn Weather Regimes in the Southeast China

Author:

Wang YongdiORCID,Sun Xinyu

Abstract

Autumn is the transitional season when the atmospheric circulation pattern changes from summer to winter. The temperature and precipitation in Southeastern China in autumn are significantly influenced by the change in circulation patterns, and both show significant uniqueness. The clustering method can be used to observe the changes of circulation patterns in detail and to observe and analyze the transition from warm to cold seasons from a detailed view of the daily circulation pattern perspective. This method may have important research implications on how to study the generation and dissipation of extreme weather events. The Self-Organizing Maps (SOM) method is used to a 500 hPa geopotential height and 850 hPa wind and sea level pressure for 1981–2020 to identify the characteristic weather patterns (WTs) in autumn (September–November) over Southeastern China. Characteristics of the captured WTs are also analyzed in terms of the distribution characteristics of weather patterns, occurrence frequency, typical progression, precipitation and extreme precipitation (EP), temperature and extreme high temperature (EHT), and the relationship with atmospheric teleconnection. Nine WTs were identified in autumn, which represents a series of weather situations consisting of troughs and ridges. On this basis, these WTs were used to carry out the differentiation of seasonal differences between early and late autumn. The maximum mean and extreme precipitation occur in several early season patterns (WT1, WT2, WT4, and WT7). It is highly likely that extremely high temperatures occur in the WT1 and WT2 patterns. The most common progression between WTs is WT7−WT1−WT2−WT4 in the early season. This seasonality allows us to distinguish between early and late seasons based on daily weather types. A preliminary trend analysis suggests that patterns in the early season occur more frequently and last longer in the early season, and patterns in the late season occur less frequently and later. That is, the longer cool season pattern is shifting to the shorter warm season pattern. In addition, the persistence of both cool and warm patterns increased during 2001–2020 relative to 1981–2000, and the risk of both flooding and drought occurrence is on the rise.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference72 articles.

1. The Variation of Autumn Rainfall in Southeast China and Its Association with Sea Surface Temperature in the Tropical Pacifil Sea;Liu;Ph.D. Thesis,2018

2. Characteristics of general circulation anomalies related to the drought events in fall in south China;Jian;Chin. J. Atmos. Sci.,2012

3. A Role of Zonal Gradient of SST between the Indian Ocean and the Western Pacific in Localized Convection around the Philippines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3