Relations between High Anticyclonic Atmospheric Types and Summer Season Temperature in Bulgaria

Author:

Pophristov Vulcho12ORCID,Nikolova Nina1ORCID,Matev Simeon1,Gera Martin3ORCID

Affiliation:

1. Faculty of Geology and Geography, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria

2. Climate, Atmosphere and Water Research Institute at Bulgarian Academy of Sciences (CAWRI–BAS), 1784 Sofia, Bulgaria

3. Faculty of Mathematics, Physics, and Informatics, Comenius University, 842 48 Bratislava, Slovakia

Abstract

The atmospheric circulation, not only near the surface but also at high altitudes, is probably the main factor determining the weather and climate of a given area, along with its latitude, altitude, the shape of the relief of the area and its surroundings, and the proximity of water basins of different sizes. The main objective of this study is to investigate the relationship between anticyclonic circulation types in the middle troposphere at the 500 hPa level and the seasonal summer temperature over the region of the central Balkan Peninsula, particularly Bulgaria. A previously compiled classification of atmospheric circulation is used, and the frequencies of the circulation types are correlated with the mean seasonal (monthly) temperature, where the extreme seasons and months are defined as the 10th percentile for cold summer seasons and months and the 90th percentile for warm ones. A positive and statistically significant correlation was found for the anticyclones located southwest of Bulgaria and a negative one for those located southeast of it. A comparison between the last two 30-year climatological periods (1961–1990 and 1991–2020) was also made, and an irrefutable decrease in the number of cold summer seasons from 257 to just 17 was found in the last 30 years, respectively, as well as a rapid increase in the number of extreme warm summer seasons from 26 to 263, encompassing all 15 meteorological stations studied.

Funder

National Science Programme “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”

Ministry of Education and Science (MES) of Bulgaria

Programme for Funding Multilateral Scientific and Technological Cooperation Projects in the Danube Region

Slovak Research and Development Agency

National Science Fund of Bulgaria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3