Heteroscedastic Characteristics of Precipitation with Climate Changes in China

Author:

Qian Zhonghua,Wang Luyao,Chen Xin,Zhang Hui,Li Zimeng

Abstract

With global warming, previous studies have found nonuniformity responses of precipitation because of regional differences. However, climate change affects the mean, extreme, and data structure of precipitation. Quantile regression, which can reflect every part of the trends of data, was used to detect responses of each part of precipitation in China. The V2.0 dataset of daily precipitation grid data (0.5° × 0.5°) from 1961 to 2020 in China was used as practical observation data. Daily precipitation in 2015–2100 from the China Model BCC-CSM2-MR of scenarios SSP2-4.5 and SSP5-8.5 were chosen as future climate changes with moderate and high radiative forcing, respectively. On the basis of the sign consistency of the slope coefficients with quantile regression, the results of quantiles q = 0.3, 0.5, 0.7 and 0.9 were selected to represent low, median, high and flood precipitation, respectively. Precipitation in four seasons was separately analyzed to observe seasonal characteristics in China. For the observation data, precipitation had obviously different responses in the low and high percentiles and was present in mainly spring and summer. In spring, in the middle and lower Yangtze Plains, the low and median precipitation increased, whereas the high and flood precipitation significantly decreased. In summer, Heilongjiang Province and northern Inner Mongolia showed decreasing trends in the low quantile and increasing trends in the high quantile, indicating a completely opposite trend adjustment. These regions deserve more attention. However, obviously different responses in low and high percentiles were not so evident in future climate changes. Self-consistency in model data may weaken the heteroscedastic characteristics of precipitation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference40 articles.

1. Trend analysis for rainfall in Delhi and Mumbai, India;Rana;Clim. Dyn.,2011

2. Climate change, tourist air travel and radical emissions reduction;Higham;J. Clean. Prod.,2016

3. Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region;Chen;Sci. Rep.,2017

4. Adjusting satellite precipitation data to facilitate hydrologic modeling;Tobin;J. Hydrometeorol.,2010

5. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901–2002) West Bengal, India;Chatterjee;Atmos. Res.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3