A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study

Author:

Vidal-Paz José1ORCID,Rodríguez-Gómez Benigno Antonio2ORCID,Orosa José A.3ORCID

Affiliation:

1. Departament of Computer Engineering, Facultad de Informática, Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain

2. Department of Industrial Engineering, Universidade da Coruña, Campus de Esteiro, 15403 Ferrol, Spain

3. Department of N.S. and M.E., Universidade da Coruña, Paseo de Ronda, 51, 15011 A Coruña, Spain

Abstract

With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network over a period of 18 years, but the time series data are not complete. In order to estimate missing rainfall data, four imputation methods were evaluated in this study: missForest, MICE, Amelia II, and inverse distance weighting (IDW). Crossvalidation results show that the precipitation is out of phase in the different stations due to their geographical locations, and the imputation can be improved with a displacement of the time series; on the other hand, the missForest method provided better results in the imputation of this meteorological variable than the MICE, Amelia, or IDW.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Ministerio de Obras Públicas, and Transporte y Medio Ambiente (1987). Cálculo Hidrometeorológico de Caudales Máximos en Pequeñas Cuencas de Carreteras, Alanmer.

2. A mathematical framework for studying rainfall intensity-duration-frequency relationships;Koutsoyiannis;J. Hydrol.,1998

3. Interpolation of missing precipitation records;Paulhus;Mon. Weather. Rev.,1952

4. A three-way model for interpolating for monthly precipitation values;Young;Mon. Weather. Rev.,1992

5. Comparison of neural network methods for infilling missing daily weather records;Coulibaly;J. Hydrol.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3