Contributions of Multiple Water Vapor Sources to the Precipitation in Middle and Lower Reaches of Yangtze River Based on Precipitation Recycle Ratio

Author:

Zhang Zeng-Ping,Wang Xi-Yu,Liu Min,Huang Bi-Cheng,Wu Yong-PingORCID,Feng Guo-Lin,Sun Gui-Quan

Abstract

Global warming weakened the summer monsoon and increased the evaporation, leading to more contribution of local evaporation moisture to the local precipitation for the monsoon areas. However, the descriptions of the contribution of the local moisture to the total precipitation and its characteristics have not been known very well. In this paper, taking the middle and lower Reaches of the Yangtze River (MLRYR) as a case and using the precipitation recycling process model, we analyzed the characteristics of the contribution of the local moisture to the total precipitation and the possible reasons. The results show that: the seasonal difference in precipitation recycling rates is obvious, the precipitation recycling rates in spring and summer are small (18.30% and 19.30%), the maximum in autumn is 30.50%, and the precipitation recycling rates in all seasons except summer show a significant upward trend (about 1.70%/10a). Additionally, the water vapor input into MLRYR from four boundaries significantly reduced except for the eastern boundary, and the water vapor contribution from the South and East borders is in summer, and the water vapor contribution from the North and West borders is in autumn, winter and spring. We suggest that the model of the precipitation recycling rate is important to evaluate the contribution of different water vapor sources, and help to further improve the ability of river water prediction in flood season.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3