Investigating the spatial propagation patterns of meteorological drought events and underlying mechanisms using complex network theory: A case study of the Yangtze River Basin, China

Author:

Liu Lei,Gao Chao,Zhu Zhanliang,Zhang Silong,Tang XiongpengORCID

Abstract

AbstractThe spatial propagation patterns of meteorological drought events (MDEs) and underlying mechanisms contribute to elucidating and forecasting drought evolution. In this study, gridded MDEs in the Yangtze River Basin (YRB) throughout the entire year, wet season and dry season were extracted from 3-month Standardized Precipitation Evapotranspiration Index (SPEI-3) series. Event synchronization (ES) and complex networks (CN) were employed to construct the MDE synchronization networks and MDE spatial propagation networks for various periods. The former were utilized to identify MDE synchronized subregions where MDEs co-occur and co-evolve in the YRB, while the latter were used to quantify the MDE spatial propagation patterns over both the basin and its subregions. The driving mechanisms behind MDE spatial propagation were further investigated by diagnosing the concomitant drought-inducing climate systems. The findings reveal the presence of four MDE synchronized subregions during the wet season and five subregions during the entire year and dry season. These subregions exhibited distinct spatial propagation patterns of MDEs, aligning with overall findings across the YRB. Notable differences were observed between wet and dry seasons, with various subregions exhibiting distinctive spatial propagation patterns during each season. These patterns are driven by variations in the controlling atmospheric circulation systems, leading to anomalies of wind patterns and moisture distribution, ultimately resulting in deficient moisture supply. The variations of tropical sea surface thermal conditions, influences of the Tibetan Plateau and MDE self-propagation triggered by land–atmosphere feedback are considered as three primary influencing factors for MDE spatial propagation in the YRB.

Funder

Science and Technology Planning Project of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3