CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand

Author:

Sirithian Duanpen,Thanatrakolsri Pantitcha,Pongpan Surangrat

Abstract

Correct emission factors are necessary for evaluating vehicle emissions and making proper decisions to manage air pollution in the transportation sector. In this study, using a chassis dynamometer at the Automotive Emission Laboratory, CO2 and CH4 emission factors of light-duty vehicles (LDVs) were developed by fuel types and driving speeds. The Bangkok driving cycle was used for the vehicle’s running and controlling under the standard procedure. Results present that the highest average CO2 and CH4 emission factors were emitted from LDG vehicles, at 232.25 g/km and 9.50 mg/km, respectively. The average CO2 emission factor of the LDD vehicles was higher than that of the LDG vehicles, at 182.53 g/km and 171.01 g/km, respectively. Nevertheless, the average CH4 emission factors of the LDD vehicles were lower than those of the LDG vehicles, at 2.21 mg/km and 3.02 mg/km, respectively. The result reveals that the lower driving speed emitted higher CO2 emission factors for LDVs. It reflects the higher fuel consumption rate (L/100 km) and the lower fuel economy rate (km/L). Moreover, the portion of CO2 emissions emitted from LDVs was 99.96% of total GHG emissions. The CO2 and CH4 emission factors developed through this study will be used to support the greenhouse gas reduction policies, especially concerning the CO2 and CH4 emitted from vehicles. Furthermore, it can be used as a database that encourages Thailand’s green transportation management system.

Funder

Thailand Science Research and Innovation Fundamental Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference41 articles.

1. Climate Change 2013,2013

2. Climate Change Master Plan 2015–2050 https://climate.onep.go.th/wp-content/uploads/2019/07/CCMP_english.pdf

3. Mid-Century, Long-Term Low Greenhouse Gas Emission Development Strategy, Thailand https://unfccc.int/sites/default/files/resource/Thailand_LTS1.pdf

4. Thailand's long-term GHG emission reduction in 2050: the achievement of renewable energy and energy efficiency beyond the NDC

5. Explaining Road Transport Emissions: A Non-Technical Guide,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3