The Impact of Traditional Raw Earth Dwellings’ Envelope Retrofitting on Energy Saving: A Case Study from Zhushan Village, in West of Hunan, China

Author:

Xie Liang,Li Zhe,Li JiayuORCID,Yang Guanglei,Jiang Jishui,Liu Zhezheng,Tong Shuyuan

Abstract

This study presents the CO2 emissions and energy performance of traditional raw earth dwellings’ envelope retrofitting located in the Zhushan Village, western Hunan Province, China. The numerical simulations of heating energy consumption on the building models were performed using DesignBuilder, an energy simulation program. The energy performance was evaluated using the indexes (including energy consumption, CO2 emissions, heat balance analysis, and air temperature profiles). The detailed evaluation process of the energy performance is presented as follows. First, the current situation was analyzed through the field research, and two typical building models were built. Second, all schemes were simulated using the DesignBuilder software. Subsequently, the four main retrofit measures (replacing the external insulation windows, setting the external wall insulation layer, setting the roof insulation layer, and setting the ceiling insulation layer) were analyzed, respectively. The optimal parameters of the respective retrofit measure were calculated. Lastly, a multi-objective optimization analysis was conducted on all retrofit plans using the coupling method. In the winter, the results indicated that the “I-shape” dwelling heat consumption of the enclosure structure was reduced by 12.8 kW·h/m2, and the CO2 emissions were reduced by 882.8 kg. While in the benchmark building, the results showed that the “L-shape” dwelling heat consumption of the enclosure structure was decreased by 13.27 kW·h/m2, and the CO2 emissions were reduced by 894.4 kg. As the renewal scheme has been progressively implemented, the whole Zhushan Village will save energy by 11.2 × 104 kW·h after the insulation renewal of the envelope structure is completed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3