Abstract
The purpose of energy-saving retrofit of rural dwellings is to obtain a more comfortable indoor thermal environment with reasonable investment. The utilization rate of heating and air conditioning equipment for dwellings in poor rural areas is very low, and the buildings operate in natural ventilation mode all year round. Since the existing research on energy-saving retrofit is aimed at air-conditioned buildings, the research methods and results are not applicable to rural dwellings. This paper proposes a set of energy-saving retrofit evaluation methods suitable for natural ventilation buildings and applies it to the research on energy-saving retrofit of rural dwellings in cold climate regions of China. The specific process is as follows: First, this paper analyzed the current situation using field research and established a typical building model. Second, the DesignBuilder software was used to simulate all 725 schemes. Subsequently, the three main retrofit measures (replacing the external insulation windows, setting the external wall insulation layer and setting the roof insulation layer) were analyzed separately, and the optimal parameters of each retrofit measure were obtained. Finally, the entropy weight method was used to perform a multi-objective optimization analysis on all retrofit plans. The results show that 6+12A+6-mm insulating glass windows + 50-mm external wall insulation + 90-mm roof insulation is the optimal energy-saving reconstruction scheme. Compared with the benchmark building, the energy-saving rate of the optimal scheme is increased by 23.81%, and the annual adaptive thermal discomfort degree-hours are decreased by 13.17%.
Funder
Natural Science Foundation of Anhui Province
Natural Science Key Research Project of Anhui Education Department
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development