Spatiotemporal Variations and Causes of Wind/Rainfall Erosion Climatic Erosivity in Qinghai Province, China

Author:

Liu Yihua,Gao Ge,Li Hongmei,Liu LüliuORCID,Fan Zong,Wen Tingting

Abstract

Wind and rainfall climatic erosivities are important parameters with which to assess the possible effects of climatic conditions on erosion. In this study, wind erosion climatic erosivity (C-factor) and rainfall erosivity (Rday-factor) were calculated for the period 1970–2020 based on data from 50 meteorological stations in Qinghai Province. The Mann–Kendall test, trend analysis, and K-means clustering method were used to explore the spatiotemporal characteristics of regional wind/rainfall climatic erosivity. Results showed that the annual mean value of the C-factor was 25.8 over the past 51 years, with an obvious trend of decline of 6.5/10a. The mean annual value of the Rday-factor was 491.6 MJ·mm/(hm2·h·a), with an obvious trend of increasing of 24.0 MJ·mm/(hm2·h·10a). Strong seasonality was found in both the C-factor and the Rday-factor. The highest values of the C-factor were found in late winter and spring, accounting for a substantial proportion of the annual C-factor (48.6%). Rainfall erosivity occurred mainly April–October, with the highest values in summer, accounting for a substantial proportion of the annual Rday-factor (72.9%). Wind-erosion climatic erosivity and rainfall erosivity were obviously asynchronous on an annual basis, and the period of their combination extended the time of soil erosion. Through k-means clustering analysis, climatic erosivity in Qinghai Province was divided into three regions: the first dominated by wind-erosion climatic erosivity, the second dominated by rainfall erosivity, and the third dominated by their combination. The most serious land erosion occurred in the third region, accounting for 34.3% of the entire land area of Qinghai Province, where annual rainfall was found to be broadly consistent at 300–400 mm. Wind speed, temperature, rainfall, and sunshine duration are key factors known to impact the variation in wind-erosion climatic erosivity, while annual erosive rainfall, number of rainy days, and sunshine duration are the main factors known to impact the variation in rainfall erosivity. The findings of this study represent a robust reference for ecoenvironmental protection, sustainable development, and soil protection.

Funder

the National nature science foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference47 articles.

1. POTENTIAL EFFECTS OF CLIMATE CHANGE ON RAINFALL EROSIVITY IN THE YELLOW RIVER BASIN OF CHINA

2. Progress in Research on Soil Erosion in Qinghai-Tibet Plateau;Chen;Acta Pedol. Sin.,2020

3. Spatiotemporal of soil wind erosion modules in the agro-pastoral ecotone of north China;Wang;J. Desert Res.,2020

4. Research status of wind and water double erosion and its main study content in future;Hai;J. Soil Water Conserv.,2002

5. Research progress and prospects of complex soil erosion;Zhang;Trans. Chin. Soc. Agric. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3