Machine Learning-Based Fog Nowcasting for Aviation with the Aid of Camera Observations

Author:

Bartok Juraj,Šišan PeterORCID,Ivica LukášORCID,Bartoková Ivana,Malkin Ondík IrinaORCID,Gaál LadislavORCID

Abstract

In aviation, fog is a severe phenomenon, causing difficulties in airport traffic management; thus, accurate fog forecasting is always appreciated. The current paper presents a fog forecast at the Poprad-Tatry Airport, Slovakia, where various methods of machine learning algorithms (support vector machine, decision trees, k-nearest neighbors) are adopted to predict fog with visibility below 300 m for a lead time of 30 min. The novelty of the study is represented by the fact that beyond the standard meteorological variables as predictors, the forecast models also make use of information on visibility obtained through remote camera observations. Cameras observe visibility using tens of landmarks in various distances and directions from the airport. The best performing model reached a score level of 0.89 (0.23) for the probability of detection (false alarm ratio). One of the most important findings of the study is that the predictor, defined as the minimum camera visibilities from eight cardinal directions, helps improve the performance of the constructed machine learning models in terms of an enhanced ability to forecast the initiation and dissipation of fog, i.e., the moments when a no-fog event turns into fog and vice versa. Camera-based observations help to overcome the drawbacks of the automated sensors (predominantly point character of measurements) and the human observers (complex, but lower frequency observations), and offer a viable solution for certain situations, such as the recent periods of the COVID-19 pandemic.

Funder

Slovak Research and Development Agency

SESAR Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3