Extreme Low-Visibility Events Prediction Based on Inductive and Evolutionary Decision Rules: An Explicability-Based Approach
Author:
Affiliation:
1. Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
2. Department of Computer Systems Engineering, Universidad Politécnica de Madrid, Campus Sur, 28031 Madrid, Spain
Abstract
Funder
Spanish Ministry of Science and Innovation
Publisher
MDPI AG
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Link
https://www.mdpi.com/2073-4433/14/3/542/pdf
Reference74 articles.
1. Development of hazardous road fog index and its application;Cho;J. East. Asia Soc. Transp. Stud.,2005
2. Analysis of the impact of fog-related reduced visibility on traffic parameters;Peng;J. Transp. Eng. Part A Syst.,2018
3. Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF;Steeneveld;Q. J. R. Meteorol. Soc.,2016
4. The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models;Steeneveld;Bound.-Layer Meteorol.,2015
5. Forecasting of poor visibility episodes in the vicinity of Tenerife Norte Airport;Bolgiani;Atmos. Res.,2019
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A general explicable forecasting framework for weather events based on ordinal classification and inductive rules combined with fuzzy logic;Knowledge-Based Systems;2024-05
2. Utilizing Advanced Regression Techniques to Forecast Visibility at Subang and Langkawi International Airport;2024 New Trends in Civil Aviation (NTCA);2024-04-25
3. Optimizing Nominal Current Output for Aeronautical Ground Lighting Using Machine Learning and Meteorological Data;IEEE Access;2024
4. Improving classification‐based nowcasting of radiation fog with machine learning based on filtered and preprocessed temporal data;Quarterly Journal of the Royal Meteorological Society;2023-11-28
5. Efficient prediction of fog-related low-visibility events with Machine Learning and evolutionary algorithms;Atmospheric Research;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3