The New PWV Conversion Models Based on GNSS and Meteorological Elements in the China Region

Author:

Li LiORCID,Wang Xun,Wei Yun,Wang Hao

Abstract

To address the problems of cumbersome processes, large data, and error accumulation in the calculation of conventional GNSS precipitable water volume (PWV), the multi-factor PWV conversion models were established using the multiple linear regression fitting method. This paper analyzed the correlation between PWV and zenith tropospheric delay (ZTD), surface temperature (T), and atmospheric pressure (P) based on the data from 38 GNSS stations in the China region from 2017 to 2018. The research results showed that the mean deviation of the one-factor PWV conversion model based on the GNSS-ZTD was 12.16 mm, and its RMS was 14.30 mm. After adding surface temperature as an independent variable to form the two-factor PWV conversion model, the mean deviation and RMS decreased to 9.07 mm and 11.15 mm. The mean deviation of the two-factor PWV conversion model based on atmospheric pressure and GNSS-ZTD was 0.31 mm, and its RMS was 0.39 mm. The mean deviation of the three-factor PWV conversion model based on surface temperature, atmospheric pressure, and GNSS-ZTD was 0.33 mm, and its RMS was 0.38 mm. The accuracies of the two-factor and three-factor PWV conversion models were similar. The external precision assessment of PWV conversion models was verified by 12 GNSS stations unused for the modelling establishment. The mean deviation and RMS of the two multi-factor PWV conversion models were both less than 0.16 mm and 0.33 mm, which proves their widespread applicability in the China region.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference54 articles.

1. A new numerical integration method for tomographic water vapor distribution in ground-based GPS network;Chin. J. Surv. Mapp.,2013

2. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Kiang Valley Flash Flood;Atmos. Res.,2016

3. Hoseini, M. (2022). On the Remote Sensing of the Atmosphere and Ocean Using Direct and Reflected GNSS Signals, Norwegian University of Science and Technology.

4. National Weather Service Forecasters Use GPS Precipitable Water Vapor for Enhanced Situational Awareness during the Southern California Summer Monsoon;Bull. Am. Meteorol. Soc.,2015

5. Li, H., Wang, X., Wu, S., Zhang, K., Chen, X., Qiu, C., Zhang, S., Zhang, J., Xie, M., and Li, L. (2020). Development of an Improved Model for Prediction of Short-Term Heavy Precipitation Based on GNSS-Derived PWV. Remote Sens., 12.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3